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Abstract. This paper presents an abstract interpretation framework
for the round-off error analysis of floating-point programs. This frame-
work defines a parametric abstract analysis that computes, for each com-
bination of ideal and floating-point execution path of the program, a
sound over-approximation of the accumulated floating-point round-off
error that may occur. In addition, a Boolean expression that charac-
terizes the input values leading to the computed error approximation
is also computed. An abstraction on the control flow of the program is
proposed to mitigate the explosion of the number of elements generated
by the analysis. Additionally, a widening operator is defined to ensure
the convergence of recursive functions and loops. An instantiation of this
framework is implemented in the prototype tool PRECiSA that gener-
ates formal proof certificates stating the correctness of the computed
round-off errors.

1 Introduction

Floating-point numbers are often used as a finite representation of real num-
bers in computer programs. While floating-point numbers offer a good compro-
mise between efficiency and precision for most applications, round-off errors in
floating-point computations may be unacceptably large for some applications. In
particular, in safety-critical systems, even small computational errors may have
catastrophic consequences when they are not appropriately accounted for. To
guarantee the safety of such systems, it is essential to correctly characterize the
difference between a computed result and its ideal real number computation and
the impact of this difference in the control-flow of a program.

Significant progress has been made in the last decade in the formal analysis of
floating-point computations [5,8,11,15,26,31]. However, as stated in [2], none of
the proposed approaches provides at the same time (i) a rigorous round-off errors
analysis that generates externally checkable proofs certificates, (ii) the possibility
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of handling a wide variety of mathematical operators, and (iii) sound support for
typical programming language constructs such as conditionals, recursion, and
loops. Another feature, which is not supported by the current errors analysis
tools, is compositionality, i.e., the ability of analyzing a program in a modular
way. This property is essential for obtaining a scalable and efficient approach.

This paper presents an abstract interpretation framework for the round-off
error analysis of floating-point programs that addresses all the concerns above.
The proposed framework defines a parametric semantics that collects, for each
combination of ideal and floating-point computational path of a functional pro-
gram, an error expression representing a provably sound upper-bound of the
accumulated round-off error. Intuitively, the semantics associates conditions to
each computed round-off error. The information accumulated in these conditions
includes the path conditions, domain conditions ensuring that all expressions are
total, e.g., divisors are non-zero, and additional conditions that enable tighter
round-off errors for particular values. These conditions not only allow for more
precise estimations of the round-off errors, but also enable the characterization
of the input values that may lead to errors larger than expected.

The defined semantics is parametric with respect to round-off error bounds
defined for a set of arithmetic operators. Hence, the analysis supports the exten-
sion of the programming language with new built-in operators as long as sound
upper bounds of the operators’ round-off errors are provided. The semantics is
also parametric with respect to a set of execution paths of interests. These paths
are individually examined by the analysis, while the other paths are condensed
together in a sole abstract execution path. This abstraction makes the analysis
more efficient and enables the analysis of programs with several nested condi-
tionals. Finally, the semantics is parametric with respect to abstract domains of
the real and Boolean expressions. Hence, the analysis supports different rigorous
enclosure methods such as interval arithmetic, affine arithmetic, Bernstein and
Taylor models, etc.

An instance of the presented framework has been implemented in the proto-
type tool PRECiSA. The input to PRECiSA is a functional program consisting
of a set of floating-point functions. The output is a set of round-off error bounds
with their associated conditions. Numerical values for these expressions are com-
puted using an optimizer based on a formally verified branch-and-bound algo-
rithm. PRECiSA generates proof certificates in the form of lemmas stating an
accumulated round-off error estimation for each function in the program. These
lemmas are equipped with proof scripts that automatically discharge them in an
interactive theorem prover.

The paper is organized as follows. In Section 2, a formalization of floating-
point round-off errors is presented. Section 3 presents the concrete semantics
that computes the set of conditional error expressions associated to a program.
In Section 4, the abstraction scheme and the widening operator are defined.
A prototype tool that implements an instance of the proposed framework is
presented in Section 5. Related work is discussed in Section 6. Section 7 concludes
the paper.
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2 Formalization of Floating-Point Round-off Errors

A floating-point number can be formalized as a pair of integers (m, e) ∈ Z2 [3,10]
where m is called the significand and e the exponent of the float. A floating-point
format f is defined as a pair of integers (p, emin), where p is called the precision
and emin is called the minimal exponent. Given a base β, a pair (m, e) ∈ Z2

represents a floating-point number in the format (p, emin) if and only if it holds
that ∣m∣ < βp and −emin ≤ e. For instance, IEEE single and double precision
floating-point numbers are specified by the formats (24,149) and (53,1074),
respectively.

A conversion function R ∶ Z2 → R is defined to refer to the real number
represented by a given float, i.e., R((m, e)) =m ⋅βe . Since the function R is not
injective, the representation of floating-point numbers is redundant. Therefore,
notions about normality and canonicity are needed. A canonical float is a float
such that is either a normal or subnormal. A normal float is a float such that
the significand cannot be multiplied by the radix and still fit in the format. A
subnormal is a float having the minimal exponent such that its significand can
be multiplied by the radix and still fit in the format. Henceforth, F represents
the set of floating-point numbers in canonical form. The expression ṽ will denote
a floating-point number (m,e) in F.

The expression Ff(r) denotes the floating-point number in format f closest
to r . The format f will be omitted when clear from the context. Let ṽ be a
floating-point number that represents a real number r , the difference ∣R(ṽ) − r ∣
is called the round-off error (or rounding error) of ṽ with respect to r . The
unit in the last place (ulp) is a measure of the precision of a floating-point
number as a representation of a real number. Given r ∈ R, ulp(r) represents the
difference between two closest consecutive floating-point numbers ṽ1 and ṽ2 such
that ṽ1 ≤ r ≤ ṽ2 and ṽ1 ≠ ṽ2. It is defined in [3] as ulp(ṽ) = βeṽ , where eṽ is the
exponent of the canonical form of ṽ that is the floating-point number closest to
r. The ulp can be used to bound the round-off error of a real number r with
respect to its floating-point representation in the following way:

∣R(F(r)) − r ∣ ≤ 1
2

ulp(r). (2.1)

Given a set Ω̃ of pre-defined arithmetic floating-point operations, the corre-
sponding set Ω of operations over real numbers, a denumerable set V of vari-
ables representing real values, and a denumerable set Ṽ of variables representing
floating-point values, where V and Ṽ are disjoint, the sets A and Ã of arithmetic
expressions over real numbers and over floating-point numbers, respectively, are
defined by the following grammar.

A ∶∶= d ∣ x ∣ op(A, . . . ,A) Ã ∶∶= d̃ ∣ x̃ ∣ õp(Ã, . . . , Ã)

where A ∈ A, d ∈ R, x ∈ V, op ∈ Ω, Ã ∈ Ã, d̃ ∈ F, x̃ ∈ Ṽ, and õp ∈ Ω̃. It is assumed
that there is a function χr ∶ Ṽ→ V that associates to each floating-point variable
x̃ a variable x ∈ V representing the real value of x̃. Given a variable assignment σ ∶
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V → R, evalA(σ,A) ∈ R denotes the evaluation of the real arithmetic expression
A with respect to σ. Similarly, given Ã ∈ Ã and σ̃ ∶ Ṽ→ F, ẽval Ã(σ̃, Ã) ∈ F denotes

the evaluation of the floating-point arithmetic expression Ã with respect to σ̃.
The (partial) order relation between arithmetic expressions is defined as follows:
A1 ≤ A2 if and only if for all σ ∶ V→ R, evalA(σ,A1) ≤ evalA(σ,A2).

The round-off error of the floating-point expression õp(ṽ1, . . . , ṽn) with re-
spect to the real-valued expression op(r1, . . . , rn), where õp is a floating-point
operator representing a real-valued operator op and ṽi is a floating-point value
representing a real value ri, for 1 ≤ i ≤ n, depends of (a) the error introduced
by the application of õp versus op and (b) the propagation of the errors carried
out by the arguments, i.e., the difference between ṽi and ri, for 1 ≤ i ≤ n, in the
application. In the case of arithmetic operators, the IEEE-754 standard states
that every basic operation is correctly rounded, therefore it should be performed
as if it would be calculated with infinite precision and then rounded to the near-
est floating-point value. Then, from Formula (2.1), the application of an n-ary
floating-point operator õp to the floating-point values ṽ1, . . . , ṽn must fulfill the
following condition.

∣R(õp(ṽi)ni=1) − op(R(ṽi))ni=1∣ ≤ 1
2

ulp(op(R(ṽi))ni=1), (2.2)

where the notation f(xi)ni=1 is used to represent f(x1, . . . , xn).
To estimate how the errors of the arguments are propagated to the result of

the application of the operator, it is necessary to bound the difference between
the application of the real operator on real values and the application of the same
operator on the floating-point arguments. The expression εop(ei)ni=1 is used to
represent such difference, where each ei is a bound of the round-off error carried
by every floating-point ṽi representing a real value ri, i.e., ∣R(ṽi) − ri∣ ≤ ei.
Therefore, εop(ei)ni=1 satisfies the following condition.

∣op(R(ṽi))ni=1 − op(ri)ni=1∣ ≤ εop(ei)ni=1. (2.3)

The following bound of the round-off error between the floating-point expression
and the real-valued counterpart follows from Formula (2.2), Formula (2.3), and
the triangle inequality.

∣R(õp(ṽi)ni=1) − op(ri)ni=1∣ ≤ εop(ei)ni=1 + 1
2

ulp(op(R(ṽi))ni=1). (2.4)

In this paper, for a given expression, the round-off error in the right-hand side
of Formula (2.4) is expressed as an error expression.

Definition 1 (Error Expression). An error expression is an arithmetic ex-
pression or the element +∞ representing an arbitrary large round-off error.

The domain of error expressions is denoted as E and it is defined as E ∶= A∪{+∞}.
The order relation on error expressions naturally extends the one on arithmetic
expressions by stating that for all e ∈ E, e ≤ +∞. The function max (respectively
min) returns the maximum (respectively minimum) of a set error expressions
with respect to the order relation ≤. The tuple (E, ≤, max , min, +∞, 0) is a
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complete lattice, where max is the least upper bound, min is the greatest lower
bound, +∞ is the greatest element of the domain, and 0 is the least element of
the domain.

Additional conditions are needed in Formula (2.4) when the operators are
not total. For example, when dealing with the division operation, it is necessary
to guarantee that the second argument of both the floating-point operator and
the real-valued operator is not zero. Furthermore, some arithmetic operations
are associated to tighter error bounds under certain conditions. These conditions
can be used to refine the estimation of the round-off error. Boolean expressions
are used to model such conditions.

The sets B and B̃ of Boolean expressions over real numbers and over floating-
point numbers, respectively, are defined by the following grammar.

B ∶∶= true ∣ false ∣ B ∧B ∣ B ∨B ∣ ¬B ∣ A < A ∣ A = A

B̃ ∶∶= true ∣ false ∣ B̃ ∧ B̃ ∣ B̃ ∨ B̃ ∣ ¬B̃ ∣ Ã < Ã ∣ Ã = Ã

where B ∈ B, A ∈ A, B̃ ∈ B̃, and Ã ∈ Ã. The conjunction ∧, disjunction ∨,
negation ¬, true, and false have the usual classical logic meaning.

Given a variable assignment σ ∶ V → R, evalB(σ,B) ∈ {true, false} denotes
the evaluation of the real Boolean expression B. In the same way, given B̃ ∈ B̃
and σ̃ ∶ Ṽ→ F, ẽval B̃(σ̃, B̃) ∈ {true, false} denotes the evaluation of the floating-

point Boolean expression B̃. The (partial) order relation between Boolean ex-
pressions over real numbers is defined as follows: B1 ⇒ B2 if and only if for all
σ ∶ V → {true, false}, evalB(σ,B1) implies evalB(σ,B2). Similarly, for floating-
point Boolean expressions, the order relation is defined as follows: B̃1 ⇒ B̃2 if
and only if for all σ̃ ∶ Ṽ → {true, false}, ẽval B̃(σ̃, B̃1) implies ẽval B̃(σ̃, B̃2). The
symbol true (respectively false) is the greatest (respectively least) Boolean ex-
pression of both domains B and B̃. The equivalence relation derived from ⇒ is
defined as B1 ⇔ B2 if and only if B1 ⇒ B2 and B2 ⇒ B1. In the following, by
abuse of notation, a formula B ∈ B ∪ B̃ and its equivalence class will be denoted
with the same symbol.

The function RB ∶ B̃→ B that converts a Boolean expression on floating-point
numbers to a Boolean expression on real numbers is defined by simply replacing
each floating-point operation with the corresponding operation on real numbers
and by applying R and χr to floating-point values and variables, respectively.

Henceforth, it is assumed that for any floating-point operator of interest
op there exists at least one formula of the following form that holds for all
e1, . . . , en ∈ E such that ∣R(ṽi) − ri∣ ≤ ei with 1 ≤ i ≤ n,

φop(ri)ni=1 ∧φõp(ṽi)ni=1 implies ∣R(õp(ṽi)ni=1) − op(ri)ni=1∣ ≤ εõp(ri, ei)ni=1, (2.5)

where φop(ri)ni=1 ∈ B, φop(ri)ni=1 /⇒ false, φõp(ṽi)ni=1 ∈ B̃, φõp(ṽi)ni=1 /⇒ false, and
εõp ∶ An × En → E. For the same floating-point operator there may be more
than one formula of the form of Formula (2.5). In this case, the disjunction of
all conditions in the left-hand side of Formula (2.5) should be complete for the
domain of the operator. The framework presented in this paper does not require
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those conditions to be disjoint, but better estimations are usually computed
when these conditions are disjoint.

Example 1. Instances of Formula (2.5) for the four basic arithmetic operators
are defined below.

– ε+̃(r1, e1, r2, e2) ∶= e1 + e2 + 1/2 ulp(∣r1 + r2∣ + e1 + e2), φ+(r1, r2) ∶= true, and
φ+̃(ṽ1, ṽ2) ∶= true.

– ε−̃(r1, e1, r2, e2) ∶= e1 + e2 + 1/2 ulp(∣r1 − r2∣ + e1 + e2), φ−(r1, r2) ∶= true, and

φ−̃(ṽ1, ṽ2) ∶= ṽ2/̃2 > ṽ1 ∨ ṽ1 > 2∗̃ṽ2.

– ε−̃(r1, e1, r2, e2) ∶= e1 + e2, φ−(r1, r2) ∶= true and φ−̃(ṽ1, ṽ2) ∶= ṽ2/̃2 ≤ ṽ1 ∧ ṽ1 ≤
2∗̃ṽ2.

– ε∗̃(r1, e1, r2, e2) ∶= ∣r1∣e2+∣r2∣e1+e1e2+1/2 ulp((∣r1∣+e1)(∣r2∣+e2)), φ∗(r1, r2) ∶=
true, and φ∗̃(ṽ1, ṽ2) ∶= true.

– ε
/̃
(r1, e1, r2, e2) ∶= ∣r1∣e2+∣r2∣e1

r2r2−e2∣r2∣
+1/2 ulp(∣r1∣+e1

∣r2∣−e2
), φ/(r1, r2) ∶= r2 ≠ 0, and φ

/̃
(ṽ1, ṽ2)

∶= ṽ2 ≠ 0.

For instance, the round-off error of the sum includes the propagation of the
errors of the operands (e1 and e2) and the error of rounding the result of the sum
(1/2 ulp(∣r1−r2∣+e1+e2)). In the case of the division operator, Boolean conditions
are used to guarantee the validity of the operation, i.e., the conditions φ/ and
φ
/̃

state that the divisors of the real and floating point expressions, respectively,

are different from zero. In the case of the subtraction operator, conditions that
improve the error approximation are provided. Indeed, in [14], it is proven that

the floating-point subtraction x −̃ y is computed exactly when y /̃2 ≤ x ≤ 2 ∗̃ y.

3 Concrete Denotational Semantics

This section presents a compositional structural denotational semantics for a
generic declarative programming language. This semantics collects information
about the round-off error of floating point operations and relies on the floating-
point error formalization presented in Section 2. This semantics is an enhance-
ment of the one introduced in [26] and it uses a more expressive domain.

The expression language considered in this paper contains conditionals, let
expressions, and function calls, possibly recursive. Given a set Ω̃ of pre-defined
arithmetic floating-point operations, a set Σ of function symbols, and a denumer-
able set Ṽ of floating-point variables, S denotes the set of program expressions.
The syntax of programs in S is given by the following grammar, where the syntax
of floating-point arithmetic expressions given in Section 2 is augmented with a
function call.

Ã ∶∶= d̃ ∣ F(d) ∣ x̃ ∣ õp(Ã, . . . , Ã) ∣ f(Ã, . . . , Ã)
S ∶∶= Ã ∣if B̃ then S else S ∣ let x̃ = Ã in S

where Ã ∈ Ã, B̃ ∈ B̃, d̃ ∈ F, d ∈ R, x̃ ∈ Ṽ, õp ∈ Ω̃, and f ∈ Σ. Bounded recursion is
added to the language as syntactic sugar using the convention for(i, j,S , g) ∶=if
i > j then S else g(j, for(i, j − 1,S , g)).
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A program is defined as a set of function declarations of the form f(x̃1, . . . , x̃n)
= S , where x̃1, . . . , x̃n are pairwise distinct variables in Ṽ and all free variables
appearing in S are in {x̃1, . . . , x̃n}. The natural number n is called the arity of
f . Henceforth, it is assumed that programs are well-formed in the sense that for
every function call f(x̃1, . . . , x̃n) that occurs in a program P , a unique function
f of arity n is defined in P . The set of programs is denoted as P.

The proposed semantics collects, for each program path, the corresponding
path conditions (for both the real and the floating-point execution), and two
expressions representing (1) the value of the output assuming the use of real
arithmetic and (2) an upper bound for the accumulated round-off error that
might affect the result due to floating-point operations. Since the semantics col-
lects information about real and floating-point execution paths, it is possible to
consider the error of taking the incorrect branch compared to the ideal execution
using real arithmetic. This enables a sound treatment of unstable tests.

Definition 2 (Test Stability). A conditional statement if φ̃ then Ẽ1 else Ẽ2

is said to be unstable if there exist two assignments σ̃ ∶ Ṽ → F and σ ∶ V → R
such that for all x̃ ∈ Ṽ, σ(χr(x̃)) = R(σ̃(x̃)) and evalB(σ,RB(φ̃)) ≠ ẽval B̃(σ̃, φ̃).
Otherwise the conditional expression is said to be stable.

In other words, a conditional statement is unstable when there exists an assign-
ment from the variables in φ̃ to F such that φ̃ and RB(φ̃) evaluate to different
Boolean values.

A condition is a set of pairs of the form (φ, φ̃), with φ ∈ B and φ̃ ∈ B̃. The
domain of conditions is (℘(B × B̃), ⇒̂ , ∨̂ , ∧̂ , {(true, true)}, {(false, false)}),
where

– ⇒̂ is the order relation over ℘(B × B̃) defined as for all η1, η2 ∈ ℘(B × B̃),
η1 ⇒̂ η2 if and only if ⋁(b1,b̃1)∈η1(b1 ∧ b̃1)⇒ ⋁(b2,b̃2)∈η2(b2 ∧ b̃2),

– the equivalence relation ⇔̂ derived from ⇒̂ is defined as follows, η1 ⇔̂ η2 if
and only if η1 ⇒̂ η2 and η2 ⇒̂ η1, and the equivalence class of a condition η
is denoted as [η]⇔̂,

– ∨̂ is the least upper bound defined as η1 ∨̂ η2 = [η1 ∪ η2]⇔̂,
– ∧̂ is the greatest lower bound defined as η1 ∧̂ η2 = ⋃{(b1 ∧ b2, b̃1 ∧ b̃2) ∣

(b1, b̃1) ∈ η1(b2, b̃2) ∈ η2},
– {(true, true)} is the greatest element of the domain, and
– {(false, false)} is the least element of the domain.

Paths in the control flow of a program are represented by sequences, possibly
empty, of 0’s and 1’s.

Definition 3 (Decision path). A decision path π is defined by the grammar
π = ε ∣ π ⋅ 0 ∣ π ⋅ 1, where ε denotes the empty path and ⋅ is the concatenation
operator.

The domain of all decision paths is denoted by Path. A decision path π mod-
els all the decision paths π′ such that π is prefix of π′. Given π1, π2 ∈ Path,
the order relation on decision paths is defined as π1 ≤prefix π2 if and only if
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π1 is a prefix of π2. A decision path univocally identifies a subprogram or subex-
pression inside the input program. Subexpressions corresponding to the then
branch of a conditional statement are identified by the index 1. Conversely, the
subexpressions corresponding to the else branch are identified by the index 0.
For example, consider the following program expression:

E =if x̃ > 0 then (if ỹ > 2 then 5 else ỹ + 1) else (if z̃ > 0 then x̃ + z̃ else ỹ ∗ z̃)

All the decision paths of expression E are identified by ε. The path corresponding
to the arithmetic expression ỹ+1 is 1⋅0, and the path corresponding to expression
x̃ + z̃ is 0 ⋅ 1.

The semantics collects information in the form of conditional error bounds.

Definition 4 (Conditional Error Bound). A conditional error bound is an
expression of the form ⟨η⟩t↠ (r, e)π, where η ∈ ℘(B× B̃), r ∈ A, e ∈ E, π ∈ Path,
and t ∈ {s,u}. A conditional error bound is said to be valid if it exists (φ, φ̃) ∈ η,
φ /⇒ false and φ̃ /⇒ false.

Intuitively, ⟨η⟩t↠ (r, e)π indicates that for the decision path π, if the condition η
is satisfied, the output of the ideal real numbers implementation of the program
is r and the round-off error of the floating-point implementation is bounded
by e. The sub-index t is used to mark by construction whether a conditional
error bound is unstable (t = u), or stable (t = s).

Conditional error bounds are ordered in the following way ⟨η1⟩t1 ↠ (r1, e1)π1≤
⟨η2⟩t2 ↠ (r2, e2)π2 if and only if η1 ⇒̂ η2, r1 = r2, e1 ≤ e2, π2 ≤prefix π1, and t1 =
t2. The domain C of conditional error bounds is defined as a set of tuples in
℘(B × B̃) × A × E × Path × {s,u}. Sets of conditional error bounds are (par-
tially) ordered as follows. For all C1,C2 ⊆ C, C1 ⊑ C2 if and only iff for all
c1 ∈ C1, there exists c2 ∈ C2 such that c1 ≤ c2. The equivalence relation de-
rived from ⊑ is defined as C1 ≡ C2 if and only if C1 ⊑ C2 and C2 ⊑ C1. In
the following, by abuse of notation, the quotient of ⊑ over equivalence classes
will be denoted with the same symbol. Furthermore, sets of conditional error
bounds will be used modulo ≡ and their class will be denoted as C. The do-
main (C, ⊑ , ⊔, ⊓, [C]≡, ∅) is a complete lattice where the least upper bound
is defined as C1 ⊔C2 ∶= [C1 ∪ C2]≡ and the greatest lower bound is defined as
C1 ⊓C2 ∶= [{c ∈ C ∣ ∃c1 ∈ C1.c ≤ c1, ∃c2 ∈ C2.c ≤ c2}]≡.

An environment is defined as a function mapping a variable to a set of con-
ditional error bounds, i.e., Env = Ṽ → C. The empty environment is denoted as
�Env and maps every variable to the empty set ∅. Let M ∶= {f(x̃1, . . . , x̃n) ∣ f ∈
Σ, x̃1, . . . , x̃n ∈ Ṽ} be the set of all possible function calls. An interpretation is a
function I ∶M → C modulo variance3. The set of all interpretations is denoted as
I. The empty interpretation is denoted as �I and maps everything to ∅.

Let õp be an n-ary floating-point operator in Ω̃ such that op in Ω is its
real-valued counterpart and there exist εõp ∶ An × En → E, φop(ri)ni=1 ∈ B and

3 Two functions I1, I2∶M → C are variants if for each m ∈ M there exists a renaming
ρ such that (I1(m))ρ = I2(mρ).
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φõp(ṽi)ni=1 ∈ B̃ such that Formula (2.5) holds. Given σ ∈ Env and I ∈ I, the se-
mantics of program expressions, E ∶ S × Env × I × Path → C, returns the set of
conditional error bounds representing an upper bound of the round-off error for
each execution path, together with the corresponding conditions. The function
χe ∶ Ṽ → V associates to each floating-point variable x̃ a variable in V repre-
senting the error of x̃. In the following, for the sake of simplicity, the singleton
condition ⟨{(φ, φ̃)}⟩ will be denoted as ⟨φ, φ̃⟩.

EJd̃Kπ(σ,I) ∶= {⟨true, true⟩s ↠ (R(d̃),0)π}

EJF(d)Kπ(σ,I) ∶= {⟨true, true⟩s ↠ (d, ∣d − F(d)∣)π}

EJx̃Kπ(σ,I) ∶=
⎧⎪⎪⎨⎪⎪⎩

{⟨true, true⟩s ↠ (χr(x̃), χe(x̃))π} if σ(x̃) = ∅
σ(x̃) otherwise

EJõp(Ãi)ni=1Kπ(σ,I) ∶=

⊔{⟨
n

⋀
i=1
φi ∧ φop(ri)ni=1,

n

⋀
i=1
φ̃i ∧ φõp(Ãi)ni=1⟩s ↠ (op(ri)ni=1, εõp(ri, ei)ni=1)π ∣∀1 ≤ i ≤ n∶

⟨φi, φ̃i⟩s ↠ (ri, ei)πi∈ EJÃiKπ(σ,I),
n

⋀
i=1
φi∧φop(ri)ni=1 /⇒ false,

n

⋀
i=1
φ̃i∧φõp(Ãi)ni=1 /⇒ false}

EJlet x̃ = Ã in SKπ(σ,I) ∶= EJSKπ(σ[x̃↦EJÃKπ
(σ,I)],I)

EJif B̃ then S1 else S2Kπ(σ,I) ∶= EJS1Kπ⋅1(σ,I) ⇓(RB(B̃),B̃) ⊔ EJS2Kπ⋅0(σ,I) ⇓(¬RB(B̃),¬B̃) ⊔

⊔{⟨φ2, φ̃1⟩u ↠ (r2, e1 + ∣r1 − r2∣)ε ∣ ⟨φ1, φ̃1⟩t1 ↠ (r1, e1)π1 ∈ EJS1Kπ⋅0(σ,I),

⟨φ2, φ̃2⟩t2 ↠ (r2, e2)π2 ∈ EJS2Kπ⋅1(σ,I)} ⇓(¬RB(B̃),B̃) ⊔

⊔{⟨φ1, φ̃2⟩u ↠ (r1, e2 + ∣r1 − r2∣)ε ∣ ⟨φ1, φ̃1⟩t1 ↠ (r1, e1)π1 ∈ EJS1Kπ⋅1(σ,I),

⟨φ2, φ̃2⟩t2 ↠ (r2, e2)π2 ∈ EJS2Kπ⋅0(σ,I)} ⇓(RB(B̃),¬B̃)

EJf(Ãi)ni=1Kπ(σ,I) ∶=⊔{⟨φ′ ∧
n

⋀
i=1
φi, φ̃

′ ∧
n

⋀
i=1
φ̃i⟩t ↠ (r′, e′)π

′

∣

⟨φ, φ̃⟩t ↠ (r, e)π
′

∈ I(f(x̃i)ni=1),∀1 ≤ i ≤ n∶ ⟨φi, φ̃i⟩ti ↠ (ri, ei)πi ∈ EJÃiKπ(σ,I),
r′ = r[χr(x̃i)/ri]ni=1, e′ = e[χe(x̃i)/ei]ni=1, φ′ = φ[χr(x̃i)/ri, χe(x̃i)/ei]ni=1,

φ̃′ = φ̃[χr(x̃i)/ri, χe(x̃i)/ei]ni=1, φ′ ∧
n

⋀
i=1
φi /⇒ false, φ̃′ ∧

n

⋀
i=1
φ̃i /⇒ false}

The semantics of a variable x̃ ∈ Ṽ consists of two cases. If x̃ belongs to the envi-
ronment, then the variable has been previously bound to a program expression
S through a let-expression. In this case, the semantics of x̃ is exactly the seman-
tics of S . If x̃ does not belong to the environment, then x̃ is a parameter of the
function. Here, a new conditional error bound is added with two place holders,
χr(x̃) and χe(x̃), representing the real value and the error of x̃, respectively.

The semantics of a floating-point arithmetic operation õp is computed by
composing the semantics of its operands. The real value is obtained by applying
the correspondent real arithmetic operation op to the real values of the operands,
and the new error bound is obtained by applying εõp to the errors and real
values of the operands. The new conditions are obtained as the combination of
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the conditions of the operands. Predicates φop and φõp represent the additional
constraints needed when op and õp are not total (as explained in Section 2).

The semantics of the expression let x̃ = Ã in S updates the current environ-
ment by associating to variable x̃ the semantics of expression Ã.

The semantics of the conditional uses an auxiliary operator ⇓ for propagating
new information in the conditions.

Definition 5 (Condition propagation operator). Given b ∈ B and b̃ ∈ B̃,
⟨η⟩t↠ (r, e)π ⇓

(b,b̃)= ⟨⋃(φ,φ̃)∈η(φ∧b, φ̃∧b̃)⟩t↠ (r, e)π if ⋁(φ,φ̃)∈η (φ ∧ b ∧ φ̃ ∧ b̃) /⇒
false, otherwise it is undefined. The definition of ⇓ naturally extends to sets of
conditional error bounds: given C ∈ C, C ⇓

(b,b̃)= ⋃c∈C c ⇓(b,b̃).

The semantics of S1 and S2 are enriched with the information about the fact that
real and floating-point execution paths match, i.e., both B̃ and RB(B̃) have the
same value. If real and floating point execution paths do not coincide, the error
of taking one branch instead of the other has to be considered. For example, if
B̃ is satisfied but RB(B̃) is not, the then branch is taken in the floating point
computation, but the else would have been taken in the real one. In this case,
the error is the difference between the real value of the result of S2 and the
floating point result of S1. It has been shown that this error is bounded by the
round-off error of S1 plus the difference between the real values of S1 and S2.
The condition (¬RB(B̃), B̃) is propagated in order to model that B̃ holds but
RB(B̃) does not. The conditional error bounds representing this case are marked
with u, denoting that the error is due to an unstable test. The parameter π of
the semantics is augmented by one index that indicates the decision taken: 1 for
the then and 0 for the else branch.

The semantics of a function call combines the conditions coming from the
interpretation of the function and the ones coming from the semantics of the
parameters. Variables representing real values and errors of formal parameters
are replaced with the expressions coming from the semantics of the actual pa-
rameters.

The semantics of a program is a function F ∶ P × Env → C defined as the
least fixed point of the immediate consequence operator P ∶ P×Env × I→ C, i.e.,
given P ∈ P, FJP K ∶= lfp(PJP K�I), which is defined as follows for each function
symbol f defined in P :

PJP KI(f (x̃1 . . . x̃n)) ∶= EJSKε(�Env ,I)
if f (x̃1 . . . x̃n) = S ∈ P. (3.2)

The least fixed point of P is guaranteed to exist from the Knaster-Tarski
Fixpoint theorem [32] since P is monotonic over C.

Example 2. Let P be a program composed by the declaration f(x̃, ỹ) = if x̃ >
1 then 3 elseif ỹ ≤ 2 then x̃+̃ỹ else x̃/̃ỹ. The semantics of P is defined as

FJP K = ⋃3
i=1{si}∪⋃6

i=1{ui} where the conditional error bounds si corresponding
to the stable cases are:

s1 = ⟨RB(x̃ > 1), x̃ > 1⟩s ↠ (R(3),0)1
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s2 = ⟨RB(¬(x̃ > 1)) ∧RB(ỹ ≤ 2),¬(x̃ > 1) ∧ ỹ ≤ 2⟩s ↠ (χr(x̃) + χr(ỹ),
ε+̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))01

s3 = ⟨RB(¬(x̃ > 1)) ∧RB(¬(ỹ ≤ 2)) ∧ χr(x̃ ≠ 0),¬(x̃ > 1) ∧ ¬(ỹ ≤ 2)⟩s ↠
(χr(x̃)/χr(ỹ), ε/̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))00

The conditional error bounds modeling unstable cases ui are six and rep-
resent all the cases when real and floating-point flows diverge. For instance:
u1 = ⟨RB(x̃ > 1),¬(x̃ > 1) ∧ ỹ ≤ 2⟩u ↠ (R(3), ∣R(3) − (χr(x̃) + χr(ỹ))∣ +
ε+̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))ε models a case in which the outermost condi-
tional is unstable, and u2 = ⟨RB(¬(x̃ > 1)) ∧RB(ỹ ≤ 2),¬(x̃ > 1) ∧ ¬(ỹ ≤ 2)⟩u ↠
(χr(x̃)+χr(ỹ), ∣χr(x̃)+χr(ỹ)−(χr(x̃)/χr(ỹ))∣+ε/̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))ε
models a similar case for the inner conditional.

4 Abstraction Scheme

The semantics presented in Section 3 is not computable since the least fixed point
of the operator defined in Equation (3.2) does not converge in a finite number of
steps for recursive programs. In addition, the sound treatment of unstable tests
provokes an explosion of the number of semantic elements generated when several
nested if-then-else occur in a function. To overcome these problems, this section
presents an abstraction framework for the semantics of Section 3 that limits
the combinatory explosion due to nested if-then-else expressions. A widening
operator is also defined to ensure the convergence of the analysis of recursive
programs. This abstraction framework yields a computable abstract semantics
that is suitable for the definition of a parametric static analysis of floating-point
round-off errors. The proposed abstract semantics is parametric with respect to
two Galois insertions:

– (E,≤) −−−−−→Ð→←−−−−−−
αE

γE (Ė, ≤̇) between (concrete) error expressions and abstract error

expression in the complete lattice (Ė, ≤̇ , ⊕̇ , ⊗̇ , ⊺Ė, �Ė), where ≤̇ is the
order relation, ⊕̇ is the least upper bound (lub), ⊗̇ is the greatest lower
bound (glb), ⊺Ė is the top, and �Ė is the bottom of the domain.

– (℘(B × B̃), ⇒̂) −−−−−→Ð→←−−−−−−
αB

γB (Ḃ, ⇒̇) between (concrete) conditions and abstract

condition in the complete lattice (Ḃ, ⇒̇ , ∨̇ , ∧̇ , ⊺Ḃ, �Ḃ), where ⇒̇ is the
order relation, ∨̇ is the lub, ∧̇ is the glb, ⊺Ḃ is the top, and �Ḃ is the
bottom.

These Galois insertions have to satisfy the following properties: αE(0) = �Ė,
αB({false, false}) = �Ḃ, and αB(η1 ∧̂ η2) = αB(η1) ∧̇ αB(η2).

The abstract semantics collects approximated information and stores it in an
abstract conditional error bound.

Definition 6 (Abstract Conditional Error Bound). An abstract condi-
tional error bound is defined as a tuple of the form ⟨η̇⟩t↠ (R, ė)π, where η̇ ∈ Ḃ,
R ∈ ℘(A), ė ∈ Ė, π ∈ Path, and t ∈ {s,u}. An abstract conditional error bound is
valid when η̇ /̇⇒ �Ḃ.
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Abstract conditional error bounds are ordered in the following way: ⟨η̇1⟩t1 ↠
(R1, ė1)π1 t ⟨η̇2⟩t2 ↠ (R2, ė2)π2 ⇐⇒ η̇1 ⇒̇ η̇2, R1 ⊆ R2, ė1 ≤̇ ė2, t1 =
t2, and π2 ≤prefix π1.

The merge (collapse) of two abstract error bounds is defined as follows.

Definition 7. Let ⟨η̇1⟩t1 ↠ (R1, ė1)π1 and ⟨η̇2⟩t2 ↠ (R2, ė2)π2 be two abstract
conditional error bounds. Their merge is defined as ⟨η̇1⟩t1 ↠ (R1, ė1)π1⊙⟨η̇2⟩t2 ↠
(R2, ė2)π2 ∶= ⟨η̇1 ∨̇ η̇2⟩t1 ↠ (R1 ∪R2, ė1 ⊕̇ ė2)mcp(π1,π2) if t1 = t2, otherwise it is
undefined.

In Definition 7, the expression mcp(Π̇) denotes the maximum common prefix of
a set of decision paths Π̇. For example, mcp({0 ⋅ 1 ⋅ 0 ⋅ 1,0 ⋅ 1 ⋅ 0 ⋅ 0,0 ⋅ 1}) = 0 ⋅ 1.

As already mentioned, the concrete semantics of Section 3 computes one
conditional error bound for every possible combination of real and floating-point
execution path. This guarantees a sound treatment of unstable tests, but four
different conditional error bounds are produced for each if-then-else. As a con-
sequence, computing the semantics can become costly for programs with nested
if-then-else expressions since the number of computed semantics elements grows
exponentially. To overcome this limitation, an abstraction function is introduced
to approximate sets of (concrete) conditional error bounds into sets of abstract
ones. The main idea behind this abstraction is that the semantics is precisely
computed just for a finite set of decision paths of interests, which are given as
an input of the analysis. The conditional error bounds that correspond to other
decision paths are collapsed together. Since, in general, the errors associated
to unstable cases are several order of magnitude bigger than the ones due to
floating-point rounding, stable and unstable cases are collapsed separately. This
way, the abstraction does not lose too much precision.

The semantics presented in Section 3 is able to compute the conditions under
which an unstable test occurs and to bound the error due to the difference
between what is actually computed in the floating-point execution and what
should have been computed in the ideal execution on real numbers. In general,
this difference is large and, most of the times, one is interested just in knowing if
unstable tests can occur in a program and under which circumstances. For this
reason, the proposed abstraction collapses the unstable conditional error bounds
in a unique expression. Using this approach, the abstract semantics is still able
to soundly deal with unstable tests and to provide a sound approximation of
the conditions under which the instability occurs. It also avoids the burden of
differentiating each possible combination of real and floating-point paths that
leads to an unstable test.

Given Π̇ ∈ ℘(Path), let ĊΠ̇ be the domain composed of sets of abstract

conditional error bounds Ċ such that for all ⟨η̇⟩t ↠ (R, ė)π ∈ Ċ the following
properties hold.

1. If there exists π′ ∈ Π̇ such that π′ ≤prefix π then the cardinality of R is 1.

2. If t = s and there is no element in Ċ of the form ⟨η̇′⟩s ↠ (R′, ė′)π
′

different
from ⟨η̇⟩t↠ (R, ė)π such that for all π′′ ∈ Π̇, it holds that π′′ /≤prefix π

′.
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3. If t = u, then there is no another unstable element in Ċ of the form ⟨η̇′⟩u ↠
(R′, ė′)π

′

different from ⟨η̇⟩t↠ (R, ė)π.

Sets of abstract conditional error bounds in ĊΠ̇ are (partially) ordered as follows.

For all Ċ1, Ċ2 ∈ ĊΠ̇ , Ċ1 ⊑̇ Ċ2 if and only if for all ċ1 ∈ Ċ1 ∃ċ2 ∈ Ċ2. ċ1 t ċ2. The

equivalence relation derived from ⊑̇ is defined as Ċ1≡̇Ċ2 if and only if Ċ1 ⊑̇
Ċ2 ∧ Ċ2 ⊑̇ Ċ1. In the following, by abuse of notation, the quotient of ⊑̇ over
equivalence classes will be denoted with the same symbol. Furthermore, sets of
conditional error bounds will be used modulo ≡̇ and their class will be denoted
as ĊΠ̇ . Given Ċ1, Ċ2 ∈ ĊΠ̇ , their least upper bound is defined as follows

Ċ1 ⊔̇ Ċ2 ∶= [⋃{⟨η̇⟩t↠ (R, ė)π ∈ Ċ1 ∪ Ċ2 ∣ ∃π′ ∈ Π̇. π′ ≤prefix π, t = s}]≡̇∪

⊙{⟨η̇⟩t↠ (R, ė)π ∈ Ċ1 ∪ Ċ2 ∣ /∃ π′ ∈ Π̇. π′ ≤prefix π, t = s}∪

⊙{⟨η̇⟩t↠ (R, ė)π ∈ Ċ1 ∪ Ċ2 ∣ t = u}

(4.1)

The tuple (ĊΠ̇ , ⊑̇ , ⊔̇, ⊓̇, ⊺ĊΠ̇ , ∅) is a complete lattice, where ⊺ĊΠ̇ ∶= ⋃{⟨⊺Ḃ⟩t↠
(R,⊺Ė)

ε ∣ t ∈ {u, s}} is the greatest element of ĊΠ̇ , ∅ is the least element, and

the greatest lower bound (⊓̇) is defined as follows Ċ1 ⊓̇ Ċ2 ∶= [{ċ ∈ Ċ ∣ ∃ċ1 ∈
Ċ1.ċ t ċ1, ∃ċ2 ∈ Ċ2.ċ t ċ2}]≡̇.

Given Π̇ ∈ ℘(Path), the abstraction function αΠ̇ collapses together all the
stable abstract conditional error bounds that are not produced from a path in
Π̇. In addition, it collapses all the unstable conditional error bounds in a unique
one. The abstraction function αΠ̇ and its adjoint γΠ̇ are defined as follows and

form a Galois insertion (C,⊑) −−−−−→Ð→←−−−−−−−
αΠ̇

γΠ̇ (ĊΠ̇ , ⊑̇).

Definition 8. Let Π̇ ∈ ℘(Path), C ∈ C and Ċ ∈ ĊΠ̇ , the abstraction and con-
cretization functions are defined as follows.

αΠ̇(C) ∶= ⊔̇{⟨αB(η)⟩t↠ ({r}, αE(e))π ∣ ⟨η⟩t↠ (r, e)π ∈ C,
∃π′ ∈ Π̇.π′ ≤prefix π, t = s} ⊔̇

⊙{⟨αB(η)⟩t↠ ({r}, αE(e))π ∣ ⟨η⟩t↠ (r, e)π ∈ C,
/∃ π′ ∈ Π̇.π′ ≤prefix π, t = s} ⊔̇

⊙{⟨αB(η)⟩t↠ ({r}, αE(e))π ∣ ⟨η⟩t↠ (r, e)π ∈ C, t = u}
γΠ̇(Ċ) ∶=⊔{⟨γB(η̇)⟩t↠ (r, γE(ė))π ∣ ∃⟨η̇⟩t↠ (R, ė)π ∈ Ċ, r ∈ R}

Lemma 1. Given Π̇ ∈ ℘(Path), the pair of functions (αΠ̇ , γΠ̇) is a Galois in-

sertion between (C,⊑) and (ĊΠ̇ , ⊑̇).

Given Π̇ ∈ ℘(Path), an abstract environment is defined as a function mapping
a variable to a set of abstract conditional error bounds, i.e., ˙Env Π̇ = Ṽ → ĊΠ̇ .
The empty abstract environment is denoted as � ˙Env and maps every variable to
the empty set ∅.
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Given Π̄ ∈ [M → ℘(Path)], an abstract interpretation is a function İ such
that ∀f(x̃i)ni=1 ∈ M, İ(f(x̃i)ni=1) ∈ ĊΠ̄(f(x̃i)ni=1) modulo variance. The set of all

interpretations respecting the aforementioned property is denoted as İΠ̄ . The
empty interpretation is denoted as �İΠ̄ and maps everything to the empty set.
The Galois insertion of Definition 8 can be lifted to the interpretation level in
the following way.

Definition 9. Let Π̄ ∈ [M → ℘(Path)], given I ∈ I and İ ∈ İΠ̄ , the abstrac-
tion function for interpretations and its adjoint are defined as follows for every
function f(x̃)ni=1 defined in I.

ᾱΠ̄(I)(f(x̃)ni=1) ∶= αΠ̄(f(x̃)ni=1)(I(f(x̃)
n
i=1))

γ̄Π̄(İ)(f(x̃)ni=1) ∶= γΠ̄(f(x̃)ni=1)(İ(f(x̃)
n
i=1))

Lemma 2. Given Π̄ ∈ [M → ℘(Path)], (ᾱΠ̄ , γ̄Π̄) is a Galois insertion between
(I,⊑) and (İΠ̄ , ⊑̇), where ⊑ and ⊑̇ denotes the natural extension of these order
relations to interpretations.

Given Π̄ ∈ [M → ℘(Path)], abstract interpretation theory [6] defines the best
correct abstract version of the semantic operator P with respect to the Galois
insertion (αΠ̇ , γΠ̇) simply as the composition αΠ̇○P○γΠ̇ . Abstract interpretation

theory [6] ensures that the abstract fixpoint semantics Ḟ Π̇ ∶= lfp(ṖΠ̇ ) is the best

correct approximation of F . It is correct because αΠ̇(F) ⊑̇ Ḟ Π̇ and it is the best
because it is the minimum (with respect to ⊑̇) of all correct approximations.

Example 3. Consider the program of Example 2 and its concrete semantics. Sup-
pose that the selected decision path of interest is 01 and the error expressions
and conditions abstraction functions are the identity. The abstract semantics of
P is defined as Ḟ{01}JP K = s2 ⊔̇ (s1 ⊙ s3) ⊔̇⊙ 6

i=1ui.
The conditional error bound s2, corresponding to the decision path of interest

01, is computed precisely. The other two stable bounds are collapsed together
in one abstract conditional error bound of the form s1 ⊙ s3 = ⟨RB(x̃ > 1) ∨
(RB(¬(x̃ > 1)) ∧ RB(¬(ỹ ≤ 2)) ∧ χr(x̃ ≠ 0)), x̃ > 1 ∨ (¬(x̃ > 1) ∧ ¬(ỹ ≤ 2))⟩s ↠
({R(3), χr(x̃)/χr(ỹ)}, ε/̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))ε. The unstable cases are

collapsed together in ⊙ 6
i=1ui.

Widening operators [1, 6] provide a solution to the convergence problem by
over-approximating infinite increasing chains in a finite number of steps. A
widening operator for the domain of abstract conditional error bounds is de-
fined. Intuitively, it approximates to the top of the domain when the recursion
is possibly non terminating (the conditions are not changing and the error is
growing), otherwise it tries to converge in k steps for recursion calls that could
terminate (the conditions are changing and they are converging to false).
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Definition 10. Given Π̄ ∈ [M → ℘(Path)], A1,A2 ∈ ĊΠ̇ such that Ċ1 ⊑̇ Ċ2,

n1, n2 ∈ N such that n1 ≤ n2, and k ∈ N, the operator ▽k ∶ (ĊΠ̇ ×N)× (ĊΠ̇ ×N)→
(ĊΠ̇ ×N) is defined as follows.

(Ċ1, n1)▽k (Ċ2, n2) ∶=

(⊔̇{⟨η̇2⟩t2 ↠ (R2,⊺Ė)
π2 ∈ Ċ2 ∣ ⟨η̇2⟩t2 ↠ (R2, ė2)π2 ∈ Ċ2, (n2 > k or

(∃⟨η̇1⟩t1 ↠ (R1, ė1)π1 ∈ Ċ1 such that η̇1↔̇η̇2, R1 ⊆ R2 and ė1 <̇ ė2) } ⊔̇

⊔̇{⟨η̇2⟩t2 ↠ (R2, ė2)π2 ∈ Ċ2 ∣ ⟨η̇2⟩t2 ↠ (R2, ė2)π2 ∈ Ċ2, n2 ≤ k,
(/∃ ⟨η̇1⟩t1 ↠ (R1, ė1)π1 ∈ Ċ1 such that η̇1↔̇η̇2, R1 ⊆ R2 and ė1 <̇ ė2) }, n2)

Lemma 3. Given k ∈ N and Π̄ ∈ [M → ℘(Path)], the operator ▽k is a widening
operator on (ĊΠ̇ ×N).

Because of Lemma 3 and the results in [1,6] it is guaranteed that, for any k ∈ N,
Π̄ ∈ [M → ℘(Path)], program P ∈ P and function f(x̃)ni=1 defined in P , the chain
defined as follows converges in a finite number of steps.

(İ0(f(x̃)ni=1), n0) = (∅,0)

(İi+1(f(x̃)ni=1), ni+1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(İi(f(x̃)ni=1), ni) if ṖΠ̄ JP Kİi(f(x̃)
n
i=1) ⊑̇ Ii(f(x̃)ni=1)

and ni ≤ ni+1

(İi(f(x̃)ni=1), ni)▽k (ṖΠ̄ JP Kİi(f(x̃)
n
i=1), ni + 1)

otherwise

5 PRECiSA

This section presents the prototype tool PRECiSA4 (Program Round-off Error
Certifier via Static Analysis) that implements a possible instantiation of the ab-
straction framework defined in Section 4. This tool is an enhancement of the tool
presented in [26]. PRECiSA supports the basic arithmetic operations (addition,
subtraction, multiplication, and division), square root, logarithm, exponential,
trigonometric functions, floor, and absolute value. As illustrated in Fig. 1, PRE-
CiSA accepts as inputs a program written in a simple functional language that
follows the grammar in Section 4 or in PVS syntax, initial ranges for the input
variables of the program, and a set of computational paths of interest for each
function in the input program.

PRECiSA computes the abstract semantics presented in Section 4. The con-
ditional error bounds corresponding to the execution paths selected by the user
are computed precisely, while the others are collapsed together. A decision path
of interest intuitively corresponds to a subprogram or subexpression inside a
function of the input program. If the user does not select any subprogram of
interest, the tool will just produce the overall round-off error for the stable case
and for the unstable one.

4 The web-interface of PRECiSA is available at http://precisa.nianet.org.

http://precisa.nianet.org
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Fig. 1. Functional architecture of PRECiSA.

No additional abstraction is done for errors and conditions. Thus, the Galois

insertions are simply defined as (E,≤) −−−−→Ð→←−−−−−−
id

id
(E,≤) and (℘(B × B̃), ⇒̂) −−−−→Ð→←−−−−−−

id

id

(℘(B × B̃), ⇒̂). The merge of abstract conditional error bounds will be instan-
tiated as follows ⟨η̇1⟩t1 ↠ (R1, ė1)π1 ⊙ ⟨η̇2⟩t2 ↠ (R2, ė2)π2 ∶= ⟨η̇1 ∨̂ η̇2⟩t1 ↠
(R1 ∪R2,max(ė1, ė2))mcp(π1,π2).

The semantics presented in Section 4 is completely independent from the in-
put values provided to the program. This makes the proposed approach scalable
since it enables a compositional analysis that reuses already computed results.
However, given the initial ranges for the input variables, it is essential to com-
pute numerical bounds from the (abstract) conditional error bounds. To this
aim, the proposed prototype tool uses the optimizer Kodiak [30] which is based
on the formally verified branch-and-bound algorithm presented in [27]. This
branch-and-bound algorithm relies on enclosure functions for arithmetic opera-
tors. These enclosure functions compute provably correct over approximations
of the symbolic error expressions using either interval arithmetic or Bernstein
basis. The algorithm recursively splits the domain of the function into smaller
subdomains and computes an enclosure of the original expression in these sub-
domains. The recursion stops when a precise enclosure is found, based on a given
precision, or when a given maximum recursion depth is reached. The output of
the algorithm is a numerical enclosure for each symbolic error expression.

Besides computing error bounds, PRECiSA generates proof certificates en-
suring that these bounds are correct. Having an externally checkable certificate
increases the level of trustworthiness of the proposed tool. PRECiSA relies on the
higher-order logic interactive theorem prover PVS [28] and a floating-point for-
malization originally presented in [3] and extended in [26]. Therefore, each com-
puted conditional error bound is translated into a lemma stating that, provided
the conditions are satisfied, the floating-point value resulting from the execution
of f on floating-point values differs from the exact real-number computation by
at most the round-off error approximation computed by the semantics. PRECiSA
generates proof scripts that automatically discharge the generated lemmas.

In the following, PRECiSA is compared in terms of accuracy and performance
with the following floating-point analysis tools: Gappa (ver. 1.3.1) [11], Fluctuat
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(ver. 3.1376) [15], FPTaylor (ver. 0.9) [31], Real2Float [22], and Rosa [8] (see
Section 6 for a description of each tool). This comparison was performed using
benchmarks taken from the Rosa and FPTaylor repositories. The selected bench-
marks involve nonlinear expressions and polynomial approximations of functions,
taken from equations used in physics, control theory, and biological modeling.
In addition, some extra benchmarks taken from real-world avionics algorithms
are considered. The experimental environment consisted of a 2.5 GHz Intel Core
i7-4710MQ with 24 GB of RAM, running under Ubuntu 16.04 LTS. The bench-
marks presented in this section and the corresponding proof certificates are avail-
able as part of the PRECiSA distribution.5

Table 1 shows numerical round-off error bounds computed by the aforemen-
tioned tools. Since the considered tools offers different configurations and options
for the analysis, only the best estimation obtained by each tool for each exam-
ple is reported in the table. In fact, FPTaylor offers two different optimization
algorithms and two different rounding models. Gappa and Fluctuat allow the
user to manually provide hints to obtain tighter error bounds. For the sake of
uniformity, for all examples and tools, input variables and constants are assumed
to be real numbers. This means that they carry a round-off error that has to be
taken into consideration in the analysis. PRECiSA compares favorably to the
other tools in terms of precision. Additionally, it supports a large set of basic
and transcendental operators as well as common programming languages con-
structs such as conditionals and loops. On the contrary, some of the other tools
lack that support, hence, they cannot analyze all the benchmarks. For instance,
the floor operator appears in the cpr yz0 and it is not supported by Real2Float,
Rosa, and FPTaylor. Stynlinski and PolyCARP contain conditionals that are
not handled by FPTaylor and Gappa. PRECiSA is the only tool that is able to
analyze the recursive program mult pow2 rec.

The times for the computation of the bounds in Table 1 are shown in Table 2.
Overall, Fluctuat is the fastest approach but it does not produce certificates for
the soundness of its results. The performance of PRECiSA is in line with similar
tools for most of the examples, and for some of the considered benchmarks
PRECiSA is the fastest approach.

In summary, for the considered examples, the proposed tool provides a good
trade-off between accuracy and performance together with a wide support for
arithmetic operations and programming constructs.

6 Related Work

The use of abstract interpretation and semantics based approaches for the prob-
lem of analyzing floating-point programs is not new. The static analyzer Astrée [7]
automatically detects the presence of potential floating-point run-time excep-
tions such as overflows by means of sound floating-point abstract domains [4,25].
The abstraction scheme presented here shares some similarities with the ap-

5 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA

https://github.com/nasa/PRECiSA
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Gappa Fluctuat Real2Float Rosa FPTaylor PRECiSA

azimuth n/a n/a 2.83E-13 n/a 8.32E-15 1.19E-13
carbonGas 6.01E-09 1.17E-08 2.21E-08 1.60E-08 5.90E-09 7.17E-09
doppler1 1.61E-13 1.27E-13 7.65E-12 2.68E-13 1.22E-13 1.98E-13
doppler2 2.86E-13 2.35E-13 1.57E-11 6.45E-13 2.23E-13 3.81E-13
doppler3 8.69E-14 7.12E-14 8.59E-12 1.01E-13 6.63E-14 1.09E-13
himmilbeau 8.51E-13 1.00E-12 1.42E-12 1.00E-12 1.00E-12 1.00E-12
jet 4.45E+03 1.07E-10 n/a 4.91E-09 1.03E-11 1.59E-11
kepler0 1.09E-13 1.03E-13 1.20E-13 8.28E-14 7.47E-14 1.06E-13
kepler1 4.68E-13 3.51E-13 4.67E-13 4.14E-13 2.86E-13 3.90E-13
kepler2 2.38E-12 2.24E-12 2.09E-12 2.15E-12 1.58E-12 1.53E-12
predatorPrey 1.67E-16 2.35E-16 2.51E-16 1.98E-16 1.59E-16 1.84E-16
rigidBody1 2.95E-13 3.22E-13 5.33E-13 3.22E-13 2.95E-13 2.95E-13
rigidBody2 3.61E-11 3.65E-11 6.48E-11 3.65E-11 3.61E-11 3.60E-11
sine 6.91E-16 7.41E-16 6.03E-16 5.18E-16 3.87E-16 6.37E-16
sineOrder3 6.54E-16 1.09E-15 1.19E-15 9.96E-16 5.94E-16 1.17E-15
sphere n/a n/a 1.52E-14 n/a 8.11E-15 9.99E-15
sqroot 5.35E-16 6.83E-16 1.28E-15 6.18E-16 5.01E-16 4.29E-16
t div t1 9.99E+00 2.80E-12 8.53E-16 5.68E-11 2.22E-16 3.91E-15
turbine1 2.41E-14 3.09E-14 2.46E-11 5.99E-14 1.66E-14 2.17E-14
turbine2 3.32E-14 2.59E-14 2.07E-12 7.67E-14 1.99E-14 2.81E-14
turbine3 3.52E-01 1.34E-14 1.70E-11 4.62E-14 9.55E-15 1.22E-14
verhulst 2.84E-16 4.80E-16 4.66E-16 4.67E-16 2.47E-16 3.74E-16
PolyCARP (stable) n/a 1.89E-15 n/a n/a n/a 1.83E-15
PolyCARP (unstable) n/a n/a 6.60E+00 n/a n/a 6.00E-01
Stynlinski (stable) n/a 2.29E-14 n/a 2.31E-14 n/a 4.28E-14
Stynlinski (unstable) n/a 2.29E-14 n/a 2.31E-14 n/a 1.61E+02
cpr yz0 1.35E+05 1.31E+05 n/a n/a n/a 1.31E+05
logExp n/a n/a 2.52E-15 n/a 1.49E-15 3.22E-15
hartman3 n/a n/a 2.99E-13 n/a 3.26E-15 1.58E-14
hartman6 n/a n/a 5.07E-13 n/a 5.26E-15 2.24E-13
mult pow2 rec (stable) n/a n/a n/a n/a n/a 7.11E-15

Table 1. Experimental results for absolute round-off error bounds (bold indicates the
best approximation, italic indicates the second best.)

proach of [19] where the analysis is refined by partitioning the program with
respect to its control flow.

Some semantics-based approaches have been proposed to estimate the round-
off error of a program. In [23], a family of abstract semantics parametric with
respect to the error order and to a partition of the program is proposed for
floating-point round-off errors. In [17], several abstract semantics for the static
analysis of finite precision computations are defined. In contrast to the approach
presented in this paper, the abstract semantics in [23] and [17] are not compo-
sitional since in these approaches the error is computed starting from a set of
input ranges for the initial variables.

Diverse analysis techniques and tools to estimate the round-off error of floating-
point computations have been proposed in the literature. Fluctuat [15] is a com-
mercial analyzer that accepts as input a C program with annotations about input
bound and uncertainties, and it produces bounds for the round-off error of the
program expressions decomposed with respect to its provenance. Fluctuat uses
a zonotopic abstract domain [17] that is based on affine arithmetic [12]. It is able
to soundly treat unstable tests as explained in [18] and it provides support for
iterative programs by using the widening operators introduced in [13, 16]. The
widening operator presented in this paper is different from the ones of [13, 16]
in that it takes advantage of the information contained in the path conditions.
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Gappa Fluctuat Real2Float Rosa FPTaylor PRECiSA

azimuth n/a n/a 1.986 n/a 26.050 5.204
carbonGas 2.130 0.062 0.776 26.734 0.497 0.090
doppler1 3.475 6.904 5.957 17.293 1.280 0.447
doppler2 3.456 6.835 5.934 18.336 1.504 0.402
doppler3 3.604 6.837 5.846 26.996 1.449 0.419
himmilbeau 1.636 0.013 0.193 4.478 0.473 0.106
jet 8.604 1.033 n/a 264.811 2.457 255.278
kepler0 8.107 9.467 0.203 3.377 2.813 2.878
kepler1 2.088 0.430 8.509 132.313 1.642 8.964
kepler2 9.303 2.233 6.630 63.256 0.743 345.785
predatorPrey 1.259 0.019 0.684 26.452 0.521 0.021
rigidBody1 0.030 0.013 0.434 0.298 0.427 0.049
rigidBody2 0.047 0.014 0.272 2.752 0.470 1.035
sine 4.147 0.022 0.872 4.513 0.625 0.631
sineOrder3 1.966 0.017 0.296 0.771 0.437 0.021
sphere n/a n/a 0.033 n/a 35.116 0.020
sqroot 4.968 0.014 0.713 1.328 43.428 0.047
t div t1 0.160 0.017 34.656 6.207 0.418 0.021
turbine1 6.222 5.410 67.599 19.254 62.760 1.746
turbine2 4.185 4.311 3.927 6.483 44.138 2.003
turbine3 6.927 5.417 66.991 20.642 62.623 4.569
verhulst 0.346 0.018 0.425 7.730 0.418 0.019
Polycarp (stable) n/a 0.013 n/a n/a n/a 0.018
Polycarp (unstable) n/a n/a 0.024 n/a n/a 0.018
Stynlinski (stable) n/a 0.266 n/a 58.543 n/a 16.376
Stynlinski (unstable) n/a 0.313 n/a 58.543 n/a 16.376
yz0 7.177 0.014 n/a n/a n/a 0.249
logExp n/a n/a 0.664 n/a 0.389 0.026
hartman3 n/a n/a 1.760 n/a 84.147 44.309
hartman6 n/a n/a 87.582 n/a 2191.622 4320.212
mult pow2 rec (stable) n/a n/a n/a n/a n/a 0.037

Table 2. Times in seconds for the generation of round-off error bounds and certificates
(bold indicates the best time, italic indicates the second best.)

RangeLab [24] is an interactive tool that determines the range of the round-
off errors for elementary arithmetic expression based on the semantics of [23].
RangeLab is able to deal with while loops by means of a widening operator based
on the classical interval domain widening. However, it does not provides a sound
approximation of unstable conditionals. RangeLab and Fluctuat do not generate
formal certificates for the computed bounds and they are not compositional.

FPTaylor [31] uses symbolic Taylor expansions to approximate floating-point
expressions and applies a global optimization technique to obtain tight bounds
for round-off errors. In addition, FPTaylor emits certificates for HOL Light [20]
except for the configurations that use an improved rounding model that cor-
relates error terms and allows much tighter error bounds [2]. Because of the
technique used by FPTaylor, it is restricted to smooth functions. Unlike PRE-
CiSA, which targets programs with conditional and function calls, FPTaylor is
designed to analyze arithmetic expressions. FPTuner [5] uses FPTaylor to imple-
ment a rigorous approach to precision allocation of mixed-precision arithmetic
expressions.

VCFloat [29] is a tool that automatically computes round-off error terms for
numerical C expressions along with their correctness proof in Coq. This tool
uses interval arithmetic to approximate the error bounds and generates valid-
ity conditions on the expressions. Similarly to FPTaylor, VCFloat targets only



20

arithmetic expressions. Real2Float [22] computes certified bounds for round-off
errors by using an optimization technique employing semidefinite programming
and sum of square certificates. Real2Float at the moment does not handle de-
normal floating-point numbers nor loops. Gappa [11] computes enclosures for
floating-point expressions via interval arithmetic. This enclosure method enables
a quick computation of the bounds, but may result in pessimistic error estima-
tions. Gappa also generates a proof of the results that can be checked in the Coq
proof assistant. In Gappa, the bound computation, the certification construction,
and their verification may require hints from the user. Thus, some level of ex-
pertise is required, unlike PRECiSA, which is fully automatic. Rosa [8,9] uses a
compilation algorithm that, from an ideal real-valued implementation, produces
a finite-precision version (if it exists) that is guaranteed to meet a given desired
precision. Rosa soundly deals with unstable tests and with bounded loops with
bounded variables.

7 Conclusion

In this paper, a semantic framework based on abstract interpretation has been
presented with the aim of providing a parametric round-off error static analysis
for floating-point programs. The abstract semantics defined by this framework
enjoys several features. It is defined in a compositional way, which allows for an
incremental, modular, and efficient treatment of the program being analyzed.
This makes the analysis defined upon this framework scalable and reusable.
Moreover, the semantics is able to deal with any floating-point operator provided
the existence of a round-off error estimation that satisfies Formula (2.5). Finally,
recursion and conditionals are soundly handled.

The semantic analysis proposed in this paper is sound with respect to un-
stable tests and it associates conditions to the computed error estimation. This
makes the analysis more precise since different execution paths may lead to
different round-off errors. The proposed technique also avoids considering com-
putations that lead to runtime errors such as division by zero or square root
of a negative number. Additionally, the information collected in the conditions
is used to discard impossible execution paths and to characterize initial input
values that may cause large round-off errors.

PRECiSA is an implementation of the proposed framework that, addition-
ally, generates proof certificates ensuring the correctness of the computed error
bounds. In future work, the authors plan to integrate in PRECiSA other abstract
domains such as affine arithmetic and a compositional version of the symbolic
Taylor expansions of [31]. This way, the most suitable domain can be chosen
depending on the input program and on the desired tradeoff between efficiency
and precision. Another interesting future direction is the integration of PRE-
CiSA with the static analyzer Frama-C [21]. This integration will enable the
automated formal verification of C floating-point programs.
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